López-Izquierdo, Raúl and del Pozo Vegas, Carlos and Sanz-García, Ancor and Mayo Íscar, Agustín and Castro Villamor, Miguel A. and Silva Alvarado, Eduardo René and Gracia Villar, Santos and Dzul López, Luis Alonso and Aparicio Obregón, Silvia and Calderón Iglesias, Rubén and Soriano, Joan B. and Martín-Rodríguez, Francisco UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2024) Clinical phenotypes and short-term outcomes based on prehospital point-of-care testing and on-scene vital signs. npj Digital Medicine, 7 (1). ISSN 2398-6352
|
Text
s41746-024-01194-6.pdf Available under License Creative Commons Attribution. Download (818kB) |
Abstract
Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | Outcomes research; Predictive markers |
| Subjects: | Subjects > Biomedicine |
| Divisions: | Europe University of Atlantic > Research > Scientific Production Fundación Universitaria Internacional de Colombia > Research > Scientific Production Ibero-american International University > Research > Scientific Production Ibero-american International University > Research > Scientific Production Universidad Internacional do Cuanza > Research > Scientific Production University of La Romana > Research > Scientific Production |
| Depositing User: | Sr Bibliotecario |
| Date Deposited: | 30 Oct 2024 09:43 |
| Last Modified: | 30 Oct 2024 09:43 |
| URI: | http://repositorio.funiber.org/id/eprint/14933 |
Actions (login required)
![]() |
View Item |


