IoT-Inspired Reliable Irregularity-Detection Framework for Education 4.0 and Industry 4.0

Verma, Anil and Anand, Divya and Singh, Aman and Vij, Rishika and Alharbi, Abdullah and Alshammari, Majid and Ortega-Mansilla, Arturo UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, arturo.ortega@uneatlantico.es (2022) IoT-Inspired Reliable Irregularity-Detection Framework for Education 4.0 and Industry 4.0. Electronics, 11 (9). p. 1436. ISSN 2079-9292

[img]
Preview
Text
electronics-11-01436-v3.pdf
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

Education 4.0 imitates Industry 4.0 in many aspects such as technology, customs, challenges, and benefits. The remarkable advancement in embryonic technologies, including IoT (Internet of Things), Fog Computing, Cloud Computing, and Augmented and Virtual Reality (AR/VR), polishes every dimension of Industry 4.0. The constructive impacts of Industry 4.0 are also replicated in Education 4.0. Real-time assessment, irregularity detection, and alert generation are some of the leading necessities of Education 4.0. Conspicuously, this study proposes a reliable assessment, irregularity detection, and alert generation framework for Education 4.0. The proposed framework correspondingly addresses the comparable issues of Industry 4.0. The proposed study (1) recommends the use of IoT, Fog, and Cloud Computing, i.e., IFC technological integration for the implementation of Education 4.0. Subsequently, (2) the Symbolic Aggregation Approximation (SAX), Kalman Filter, and Learning Bayesian Network (LBN) are deployed for data pre-processing and classification. Further, (3) the assessment, irregularity detection, and alert generation are accomplished over SoTL (the set of threshold limits) and the Multi-Layered Bi-Directional Long Short-Term Memory (M-Bi-LSTM)-based predictive model. To substantiate the proposed framework, experimental simulations are implemented. The experimental outcomes substantiate the better performance of the proposed framework, in contrast to the other contemporary technologies deployed for the enactment of Education 4.0

Item Type: Article
Uncontrolled Keywords: Education 4.0; Industry 4.0; IoT (Internet of Things); IoT; Fog; Cloud Computing; M-Bi-LSTM; assessment; irregularity detection
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Depositing User: Sr Bibliotecario
Date Deposited: 27 Sep 2022 09:04
Last Modified: 12 Jul 2023 11:45
URI: http://repositorio.funiber.org/id/eprint/3716

Actions (login required)

View Item View Item