White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images

Rustam, Furqan and Aslam, Naila and De La Torre Díez, Isabel and Khan, Yaser Daanial and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED (2022) White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images. Healthcare, 10 (11). p. 2230. ISSN 2227-9032

[img]
Preview
Text
healthcare-10-02230 (1).pdf
Available under License Creative Commons Attribution.

Download (20MB) | Preview

Abstract

White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.

Item Type: Article
Uncontrolled Keywords: white blood cells classification; leukemia; texture features; Chi-squared; SMOTE
Subjects: Subjects > Biomedicine
Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Depositing User: Sr Bibliotecario
Date Deposited: 16 Nov 2022 09:39
Last Modified: 09 Dec 2024 08:40
URI: http://repositorio.funiber.org/id/eprint/4607

Actions (login required)

View Item View Item