Suspended Sediment Yield Forecasting with Single and Multi-Objective Optimization Using Hybrid Artificial Intelligence Models

Yadav, Arvind and Chithaluru, Premkumar and Singh, Aman and Albahar, Marwan Ali and Jurcut, Anca and Álvarez, Roberto Marcelo and Mojjada, Ramesh Kumar and Joshi, Devendra UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, roberto.alvarez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) Suspended Sediment Yield Forecasting with Single and Multi-Objective Optimization Using Hybrid Artificial Intelligence Models. Mathematics, 10 (22). p. 4263. ISSN 2227-7390

[img]
Preview
Text
mathematics-10-04263-v2.pdf
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Rivers play a major role within ecosystems and society, including for domestic, industrial, and agricultural uses, and in power generation. Forecasting of suspended sediment yield (SSY) is critical for design, management, planning, and disaster prevention in river basin systems. It is difficult to forecast the SSY using conventional methods because these approaches cannot handle complicated non-stationarity and non-linearity. Artificial intelligence techniques have gained popularity in water resources due to handling complex problems of SSY. In this study, a fully automated generalized single hybrid intelligent artificial neural network (ANN)-based genetic algorithm (GA) forecasting model was developed using water discharge, temperature, rainfall, SSY, rock type, relief, and catchment area data of eleven gauging stations for forecasting the SSY. It is applied at individual gauging stations for SSY forecasting in the Mahanadi River which is one of India’s largest peninsular rivers. All parameters of the ANN are optimized automatically and simultaneously using the GA. The multi-objective algorithm was applied to optimize the two conflicting objective functions (error variance and bias). The mean square error objective function was considered for the single-objective optimization model. Single and multi-objective GA-based ANN, autoregressive and multivariate autoregressive models were compared to each other. It was found that the single-objective GA-based ANN model provided the best accuracy among all comparative models, and it is the most suitable substitute for forecasting SSY. If the measurement of SSY is unavailable, then single-objective GA-based ANN modeling approaches can be recommended for forecasting SSY due to comparatively superior performance and simplicity of implementation

Item Type: Article
Uncontrolled Keywords: Mahanadi River; water discharge; genetic algorithm; ANN; SSY
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Depositing User: Sr Bibliotecario
Date Deposited: 26 Jan 2023 18:01
Last Modified: 17 Jul 2023 09:36
URI: http://repositorio.funiber.org/id/eprint/5574

Actions (login required)

View Item View Item