Blockchain-Modeled Edge-Computing-Based Smart Home Monitoring System with Energy Usage Prediction

Iqbal, Faiza and Altaf, Ayesha and Waris, Zeest and Gavilanes Aray, Daniel and López Flores, Miguel Ángel and Díez, Isabel de la Torre and Ashraf, Imran UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, miguelangel.lopez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2023) Blockchain-Modeled Edge-Computing-Based Smart Home Monitoring System with Energy Usage Prediction. Sensors, 23 (11). p. 5263. ISSN 1424-8220

[img]
Preview
Text
sensors-23-05263.pdf
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Internet of Things (IoT) has made significant strides in energy management systems recently. Due to the continually increasing cost of energy, supply–demand disparities, and rising carbon footprints, the need for smart homes for monitoring, managing, and conserving energy has increased. In IoT-based systems, device data are delivered to the network edge before being stored in the fog or cloud for further transactions. This raises worries about the data’s security, privacy, and veracity. It is vital to monitor who accesses and updates this information to protect IoT end-users linked to IoT devices. Smart meters are installed in smart homes and are susceptible to numerous cyber attacks. Access to IoT devices and related data must be secured to prevent misuse and protect IoT users’ privacy. The purpose of this research was to design a blockchain-based edge computing method for securing the smart home system, in conjunction with machine learning techniques, in order to construct a secure smart home system with energy usage prediction and user profiling. The research proposes a blockchain-based smart home system that can continuously monitor IoT-enabled smart home appliances such as smart microwaves, dishwashers, furnaces, and refrigerators, among others. An approach based on machine learning was utilized to train the auto-regressive integrated moving average (ARIMA) model for energy usage prediction, which is provided in the user’s wallet, to estimate energy consumption and maintain user profiles. The model was tested using the moving average statistical model, the ARIMA model, and the deep-learning-based long short-term memory (LSTM) model on a dataset of smart-home-based energy usage under changing weather conditions. The findings of the analysis reveal that the LSTM model accurately forecasts the energy usage of smart homes.

Item Type: Article
Uncontrolled Keywords: Internet of Things; blockchain; edge computing; privacy; machine learning; net-metering
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Depositing User: Sr Bibliotecario
Date Deposited: 08 Jun 2023 18:11
Last Modified: 21 Oct 2024 12:15
URI: http://repositorio.funiber.org/id/eprint/7455

Actions (login required)

View Item View Item