A Comprehensive Review of Recent Advances in Artificial Intelligence for Dentistry E-Health

Shafi, Imran and Fatima, Anum and Afzal, Hammad and Díez, Isabel de la Torre and Lipari, Vivian and Breñosa, Jose and Ashraf, Imran UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, UNSPECIFIED (2023) A Comprehensive Review of Recent Advances in Artificial Intelligence for Dentistry E-Health. Diagnostics, 13 (13). p. 2196. ISSN 2075-4418

[img]
Preview
Text
diagnostics-13-02196.pdf
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Artificial intelligence has made substantial progress in medicine. Automated dental imaging interpretation is one of the most prolific areas of research using AI. X-ray and infrared imaging systems have enabled dental clinicians to identify dental diseases since the 1950s. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, and machine- and deep-learning models for dental disease diagnoses using X-ray and near-infrared imagery. Despite the notable development of AI in dentistry, certain factors affect the performance of the proposed approaches, including limited data availability, imbalanced classes, and lack of transparency and interpretability. Hence, it is of utmost importance for the research community to formulate suitable approaches, considering the existing challenges and leveraging findings from the existing studies. Based on an extensive literature review, this survey provides a brief overview of X-ray and near-infrared imaging systems. Additionally, a comprehensive insight into challenges faced by researchers in the dental domain has been brought forth in this survey. The article further offers an amalgamative assessment of both performances and methods evaluated on public benchmarks and concludes with ethical considerations and future research avenues.

Item Type: Article
Uncontrolled Keywords: E-health services; healthcare; deep learning; image processing; medical imaging
Subjects: Subjects > Biomedicine
Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Depositing User: Sr Bibliotecario
Date Deposited: 19 Jul 2023 06:42
Last Modified: 19 Jul 2023 06:42
URI: http://repositorio.funiber.org/id/eprint/8067

Actions (login required)

View Item View Item