Khan, Arooj and Shafi, Imran and Khawaja, Sajid Gul and de la Torre Díez, Isabel and López Flores, Miguel Ángel and Castanedo Galán, Juan and Ashraf, Imran UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, miguelangel.lopez@uneatlantico.es, juan.castanedo@uneatlantico.es, UNSPECIFIED (2023) Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants. Sensors, 23 (18). p. 7710. ISSN 1424-8220
|
Text
sensors-23-07710-v2.pdf Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | adaptive filtering; particle swarm optimization; bit error rate; signal quality |
| Subjects: | Subjects > Engineering |
| Divisions: | Europe University of Atlantic > Research > Scientific Production Ibero-american International University > Research > Scientific Production Ibero-american International University > Research > Scientific Production Universidad Internacional do Cuanza > Research > Scientific Production |
| Depositing User: | Sr Bibliotecario |
| Date Deposited: | 08 Sep 2023 07:58 |
| Last Modified: | 08 Sep 2023 07:58 |
| URI: | http://repositorio.funiber.org/id/eprint/8726 |
Actions (login required)
![]() |
View Item |


