In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain

Romero-Márquez, Jose M. and Navarro-Hortal, María D. and Orantes, Francisco J. and Esteban-Muñoz, Adelaida and Mazas Pérez-Oleaga, Cristina and Battino, Maurizio and Sánchez-González, Cristina and Rivas-García, Lorenzo and Giampieri, Francesca and Quiles, José L. and Forbes-Hernandez, Tamara Y. UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, tamara.forbes@unini.edu.mx (2023) In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain. Antioxidants, 12 (2). p. 404. ISSN 2076-3921

[img]
Preview
Text
antioxidants-12-00404.pdf
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

There is growing evidence that Alzheimer’s disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects

Item Type: Article
Uncontrolled Keywords: Aβ; tau; AAPH; oxidative stress; ROS; phytochemical; Alzheimer; tauopathies
Subjects: Subjects > Nutrition
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Depositing User: Sr Bibliotecario
Date Deposited: 17 Feb 2023 12:12
Last Modified: 21 Oct 2024 12:29
URI: http://repositorio.funiber.org/id/eprint/5929

Actions (login required)

View Item View Item