Rustam, Furqan and Ishaq, Abid and Hashmi, Muhammad Shadab Alam and Siddiqui, Hafeez Ur Rehman and Dzul Lopez, Luis and Castanedo Galán, Juan and Ashraf, Imran UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, luis.dzul@unini.edu.mx, juan.castanedo@uneatlantico.es, UNSPECIFIED (2023) Railway Track Fault Detection Using Selective MFCC Features from Acoustic Data. Sensors, 23 (16). p. 7018. ISSN 1424-8220
|
Text
sensors-23-07018.pdf Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Railway track faults may lead to railway accidents and cause human and financial loss. Spatial, temporal, and weather elements, and wear and tear, lead to ballast, loose nuts, misalignment, and cracks leading to accidents. Manual inspection of such defects is time-consuming and prone to errors. Automatic inspection provides a fast, reliable, and unbiased solution. However, highly accurate fault detection is challenging due to the lack of public datasets, noisy data, inefficient models, etc. To obtain better performance, this study presents a novel approach that relies on mel frequency cepstral coefficient features from acoustic data. The primary objective of this study is to increase fault detection performance. As well as designing an ensemble model, we utilize selective features using chi-square(chi2) that have high importance with respect to the target class. Extensive experiments were carried out to analyze the efficiency of the proposed approach. The experimental results suggest that using 60 features, 40 original features, and 20 chi2 features produces optimal results both regarding accuracy and computational complexity. A mean accuracy score of 0.99 was obtained using the proposed approach with machine learning models using the collected data. Moreover, this performance was significantly better than that of existing approaches; however, the performance of models may vary in real-world settings.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | vehicle automation; railway track fault detection; mel frequency cepstral coefficient; acoustic data; machine learning |
| Subjects: | Subjects > Engineering |
| Divisions: | Europe University of Atlantic > Research > Scientific Production Fundación Universitaria Internacional de Colombia > Research > Scientific Production Ibero-american International University > Research > Scientific Production Ibero-american International University > Research > Scientific Production Universidad Internacional do Cuanza > Research > Scientific Production |
| Depositing User: | Sr Bibliotecario |
| Date Deposited: | 05 Sep 2023 07:55 |
| Last Modified: | 05 Sep 2023 07:55 |
| URI: | http://repositorio.funiber.org/id/eprint/8652 |
Actions (login required)
![]() |
View Item |


